


Launching your app with a root
module
Prerequisites

A basic understanding of the following:

JavaScript Modules vs. NgModules.

An NgModule describes how the application parts �t together. Every application has at least one

Angular module, the root module, which must be present for bootstrapping the application on

launch. By convention and by default, this NgModule is named AppModule .

When you use the Angular CLI command ng new to generate an app, the default AppModule

looks like the following:

After the import statements is a class with the @NgModule decorator.

The @NgModule decorator identi�es AppModule as an NgModule class. @NgModule takes a

metadata object that tells Angular how to compile and launch the application.

/* JavaScript imports */

import { BrowserModule } from '@angular/platform-browser';

import { NgModule } from '@angular/core';

import { AppComponent } from './app.component';

/* the AppModule class with the @NgModule decorator */

@NgModule({

 declarations: [

 AppComponent

],

 imports: [

 BrowserModule

],

 providers: [],

 bootstrap: [AppComponent]

})

export class AppModule { }

https://github.com/angular/angular/edit/master/aio/content/guide/bootstrapping.md?message=docs%3A%20describe%20your%20change...
https://angular.io/guide/ngmodule-vs-jsmodule
https://angular.io/cli
https://angular.io/api/core/NgModule
https://angular.io/guide/glossary#decorator
https://angular.io/api/core/NgModule
https://angular.io/api/core/NgModule
https://angular.io/api/core/NgModule
https://angular.io/api/platform-browser/BrowserModule
https://angular.io/api/core/NgModule
https://angular.io/api/core/NgModule
https://angular.io/api/core/NgModule
https://angular.io/api/platform-browser/BrowserModule

declarations—this application's lone component.

imports—import BrowserModule to have browser speci�c services such as DOM

rendering, sanitization, and location.

providers—the service providers.

bootstrap—the root component that Angular creates and inserts into the index.html
host web page.

The default application created by the Angular CLI only has one component, AppComponent , so

it is in both the declarations and the bootstrap arrays.

The declarations array
The module's declarations array tells Angular which components belong to that module. As

you create more components, add them to declarations .

You must declare every component in exactly one NgModule class. If you use a component

without declaring it, Angular returns an error message.

The declarations array only takes declarables. Declarables are components, directives and

pipes. All of a module's declarables must be in the declarations array. Declarables must

belong to exactly one module. The compiler emits an error if you try to declare the same class in

more than one module.

These declared classes are visible within the module but invisible to components in a different

module unless they are exported from this module and the other module imports this one.

An example of what goes into a declarations array follows:

A declarable can only belong to one module, so only declare it in one @NgModule . When you

need it elsewhere, import the module that has the declarable you need in it.

Using directives with @NgModule

Use the declarations array for directives. To use a directive, component, or pipe in a module,

you must do a few things:

declarations: [

 YourComponent,

 YourPipe,

 YourDirective

],

https://angular.io/api/platform-browser/BrowserModule
https://angular.io/api/core/NgModule
https://angular.io/guide/attribute-directives
https://angular.io/guide/pipes
https://angular.io/api/core/NgModule
https://angular.io/api/core/NgModule

1. Export it from the �le where you wrote it.

2. Import it into the appropriate module.

3. Declare it in the @NgModule declarations array.

Those three steps look like the following. In the �le where you create your directive, export it.

The following example, named ItemDirective is the default directive structure that the CLI

generates in its own �le, item.directive.ts :

src/app/item.directive.ts

The key point here is that you have to export it so you can import it elsewhere. Next, import it

into the NgModule , in this example app.module.ts , with a JavaScript import statement:

src/app/app.module.ts

And in the same �le, add it to the @NgModule declarations array:

src/app/app.module.ts

Now you could use your ItemDirective in a component. This example uses AppModule , but

you'd do it the same way for a feature module. For more about directives, see Attribute

Directives and Structural Directives. You'd also use the same technique for pipes and

components.

Remember, components, directives, and pipes belong to one module only. You only need to

declare them once in your app because you share them by importing the necessary modules.

This saves you time and helps keep your app lean.

import { Directive } from '@angular/core';

@Directive({

 selector: '[appItem]'

})

export class ItemDirective {

// code goes here

 constructor() { }

}

import { ItemDirective } from './item.directive';

declarations: [

 AppComponent,

 ItemDirective

],

https://angular.io/api/core/NgModule
https://angular.io/api/core/NgModule
https://angular.io/api/core/NgModule
https://angular.io/guide/attribute-directives
https://angular.io/guide/structural-directives
https://angular.io/guide/pipes
https://angular.io/api/core/Directive
https://angular.io/api/core/Directive

The imports array
The module's imports array appears exclusively in the @NgModule metadata object. It tells

Angular about other NgModules that this particular module needs to function properly.

src/app/app.module.ts (excerpt)

This list of modules are those that export components, directives, or pipes that component

templates in this module reference. In this case, the component is AppComponent , which

references components, directives, or pipes in BrowserModule , FormsModule , or

HttpClientModule . A component template can reference another component, directive, or

pipe when the referenced class is declared in this module or the class was imported from

another module.

The providers array
The providers array is where you list the services the app needs. When you list services here,

they are available app-wide. You can scope them when using feature modules and lazy loading.

For more information, see Providers.

The bootstrap array
The application launches by bootstrapping the root AppModule , which is also referred to as an

entryComponent . Among other things, the bootstrapping process creates the component(s)

listed in the bootstrap array and inserts each one into the browser DOM.

Each bootstrapped component is the base of its own tree of components. Inserting a

bootstrapped component usually triggers a cascade of component creations that �ll out that

tree.

While you can put more than one component tree on a host web page, most applications have

only one component tree and bootstrap a single root component.

imports: [

 BrowserModule,

 FormsModule,

 HttpClientModule

],

https://angular.io/api/core/NgModule
https://angular.io/api/platform-browser/BrowserModule
https://angular.io/api/forms/FormsModule
https://angular.io/api/common/http/HttpClientModule
https://angular.io/guide/providers
https://angular.io/api/platform-browser/BrowserModule
https://angular.io/api/forms/FormsModule
https://angular.io/api/common/http/HttpClientModule

This one root component is usually called AppComponent and is in the root module's

bootstrap array.

More about Angular Modules
For more on NgModules you're likely to see frequently in apps, see Frequently Used Modules.

https://angular.io/guide/frequent-ngmodules

